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A finite difference scheme is proposed for two-dimensional radiation hydrody-
namical equations in the transport limit. The scheme is of Godunov-type, in which
the set of time-averaged flux needed in the scheme is calculated through Riemann
problems solved. In the scheme, flow signals are explicitly treated, while radiation
signals are implicitly treated. Flow fields and radiation fields are updated simulta-
neously. An iterative approach is proposed to solve the set of nonlinear algebraic
equations arising from the implicitness of the scheme. The sweeping method used
in the scheme significantly reduces the number of iterations or computer CPU time
needed. A new approach to further accelerate the convergence is proposed, which
further reduces the number of iterations needed by more than one order. No matter
how many cells radiation signals propagate in one time step, only an extremely small
number of iterations are needed in the scheme, and each iteration costs only about
0.8 percent of computer CPU time which is needed for one time step of a second order
accurate and fully explicit scheme. Two-dimensional problems are treated through a
dimensionally split technique. Therefore, iterations for solving the set of algebraic
equations are carried out only in each one-dimensional sweep. Through numerical
examples it is shown that the scheme keeps the principle advantages of Godunov
schemes for flow motion. In the time scale of flow motion numerical results are the
same as those obtained from a second order accurate and fully explicit scheme. The
acceleration of the convergence proposed in this paper may be directly applied to
other hyperbolic systems. © 2000 Academic Press
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1. INTRODUCTION

Radiation hydrodynamical equations play an important role in laser fusion [33] a
astrophysics [12]. For many years efforts have been underway to develop numerical sche
for radiation hydrodynamical equations, for example, see [15, 16, 21, 32, 36, 37, 42]. In
transport limit, radiation hydrodynamical equations may be written as a hyperbolic syst
of conservation laws plus emission and absorption of radiation. Physically, there are
kinds of signals involved in the system. One is flow signals including sound waves &
entropy waves, and the other is radiation signals. Two distinctive features of the systen
that shock waves are involved and radiation signals propagate much more fast than
signals.

One of the major difficulties of standard numerical methods for the system is to resolve
keep track of shocks involved. To resolve shocks, it is natural to extend established mett
for the Euler equations. During the last two decades, numerical methods for capturing she
have been well developed (for example, see[1, 2,6-11, 13, 14, 20, 25-27, 29]) among w
Godunov schemes are particularly efficient for shock problems. Godunov [1] supposed
initial data could be replaced by a set of piecewise constant data with discontinuities
used the exact solution of Riemann problems to advance piecewise constant data. A n
extension of Godunov’s scheme was made by van Leer in his MUSCL scheme [6] wh
used a Riemann solver to advance piecewise linear data. Roe developed an approxi
Riemann solver [8] suitable for the use in Godunov schemes. A nonlinear Riemann so
and a contact steepener were developed in the piecewise parabolic method PPM [10,
Key points in Godunov schemes are the use of characteristic formulations, reconstruc
of initial data, and an approximate Riemann solver which is suitable for computing a se
time-averaged flux at grid points.

Another difficulty in numerical simulations for radiation hydrodynamics is to treat re
diation signals efficiently. If radiation signals are explicitly treated, the size of the tin
step will be extremely small since the size is restricted by the speed at which radiat
signals propagate. For many problems, we are interested in the time scale of flow mot
Therefore, radiation signals may be implicitly treated.

Implicit and implicit—explicit hybrid schemes for the Euler equations have been dev
oped for many years. Beam and Warming [5] proposed an implicit scheme for hyperb
systems of conservation laws. Engquist and Osher [7] proposed a method for trans
flows. Van Leer and Mulder [17] developed a scheme which is time-accurate for small ti
steps and turns into a relaxation method for large time stepetvd18] proposed an im-
plicit TVD scheme for steady states. Glaz and Wardlaw [19] proposed a high-order Godu
scheme for steady supersonic gas dynamics. Frgxall[22] developed an implicit—explicit
hybrid scheme which extends Godunov schemes to the implicit regime. Jameson and
[23, 24] proposed an implicit scheme which is combined with the multigrid method. Lc
and Hui [28] developed a first-order Godunov scheme for steady supersonic flows. Bl
and Rubin [30] extended a TVD scheme to fully implicit and partially implicit regimes
Wilcoxson and Manousiouthakis [31] developed implicit time marching implementation
the essentially non-oscillatory scheme. Dai and Woodward [38, 39] iteratively implemen
an implicit—explicit hybrid scheme.

Animplicit treatment for time-dependent problems will result in a large set of (nonlinee
algebraic equations at each time step, which, typically, are first linearized and then solve
either a direct method or an iterative method. Direct methods are presented in all traditic
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courses of linear algebra. Generally, iterative methods are preferred for implementatiol
parallel computers. For an iterative method, a significant question is whether an itera
process will actually be successful and will lead to the solution of the algebraic equatic
An important aspect in practice is the rate of convergence. A good comparison of
iterative linear solvers for two-dimensional radiation hydrodynamics is recently given
[41]. One of the conclusions from the comparison is that multigrid algorithms are prefer
because of heat conduction involved in the diffusion limit. Another problem involved
implicit schemes is the nonlinearity of equations. We don’t recommend the classical New
method for the nonlinearity in implicit schemes, although the Newton method convert
fast. Explicit evaluation of Jacobi coefficients in the Newton method is very expensive
implicit schemes.

In this paper, we will develop a numerical scheme for two-dimensional radiation h
drodynamical equations in the transport limit. The scheme is of Godunov-type, in wh
the set of time-averaged flux needed in the scheme is calculated through Riemann
lems solved. The Riemann solver to be developed in this paper is based on chara
istic formulations. To resolve shocks, flow signals are explicitly treated in the schen
while radiation signals are implicitly treated. In this paper, an iterative approach is
veloped for the set of nonlinear algebraic equations arising from the implicitness of -
scheme. Compared to the iterative approach developed in [38, 39], the number of iterat
needed is reduced by more than one order. No matter how many cells radiation sig
propagate in one time step, only an extremely small number of iterations are neede
the scheme. Toward numerical radiation hydrodynamics, this paper is the continuatio
the work reported in [40], in which radiation hydrodynamics is treated in the diffusic
limit.

The plan of this paper is as follows. In the second section radiation hydrodynami
equations are given. In the third section we will present a procedure to find characteri
formulations for hyperbolic systems of conservation laws including the set of radiati
hydrodynamical equations. A numerical scheme is described in the third section, wt
includes an explicit treatment for flow signals, an implicit treatment for radiation signa
an iterative approach for a set of nonlinear algebraic equations, an accelerated approa
fast convergence, and treatment for two-dimensional problems. Numerical examples
shown in the fourth section to demonstrate the features of the numerical scheme. The
section is the conclusions of this paper and a brief discussion about future work tow
numerical radiation hydrodynamics.

2. BASIC EQUATIONS

Radiating fluid often contains a fraction of radiation momentum and energy. To descr
the behavior of such flows we need conservation laws that account for both gas material
radiation contributions to the flow dynamics. In the transport limit, radiation hydrodynamic
equations [12] may be written as

ap _
E+v.(pu)_o, (1)

9 9 9
ﬁ(pux) + &(Puxux +p) + 8—y(/0uxuy) = p(Ox + x fx), (2
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0 0 0
ﬁ(ﬁuy) + &(puyux) + @(Puyuy +p)=p(@y+ xfy, (3)
0 1 0 1 d 1
ot pux+6fx +& pUxUx + p + pr+6uxfx +87y pUxUy + Euyfx
1. duy
= — —fy— 4
PYx c X%’ 4)

a 1 a 1 0 1
at pUY+6fy +a7 pUyUx+EUxfy +87y ,0UyUy+p+pr+6nyy

1, au
= -~ f,—

P9y ¢y (5)
e f 4
E+V-[U(er+pr)+01=U-Vpr—Cp(fceer—ar/cpT), (6)

JE
W+V.[U(E+p+pr)+cf]=u~Vpr+xpu-f. @

Here,p, p, U, €, andT are the mass density, gas pressure, flow velocity, specific interr
energy, and temperature of flogy, f, and p; are the radiation energy density, radiation
flux, and radiation pressurg, is the total energy density,

1,
E=p €+§u —-g-r)+e,

ganda, are the gravitational constant and radiation constantyargl andx, are the radia-
tion flux coefficient, radiation energy absorption coefficient, and radiation energy emissiv
The set of Eqgs. (1)—(7) is complete if two equations of state are given, one for flow fiel
and the other for radiation fields. For the purpose of our test problems, we assurriatihe
for flow fields, p= (y — 1) p¢, and the Eddington factor for radiation fields,

pr = fee.

Herey is the ratio of specific heats, arfg is an Eddington factor.

The termu - V p; at the right-hand side of Egs. (6), (7) is the rate of work done by the flui
against the radiation pressure gradient. The teriu/c at the right-hand side of Eqgs. (4),
(5) arises because the radiation energy flux has inertia [12]. In some applications, these
terms,u- Vp, andf- Vu/c, may be omitted.

General equations for radiation hydrodynamics are far more complicated than those g
in Egs. (1)—(7) which are often called equations in the transport limit. In the transport lirr
interaction between radiation fields and gas material is approximately described by a
transport coefficients. These transport coefficients describe the response of gas matet
radiation, and, in general, they are frequency dependent or they should be collected fc
the radiation frequencies involved. The frequency dependent opagiyyof gas material
is contributed from absorptionp®(v) and scattering 3(v). The radiation flux coefficient is
related to the opacity through the flux mean

f(

fv) dv.

X = /[xa(V) + x°(»)]
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Here f is the magnitude of radiation fluxand f (v) is monochromatic radiation flux. The
energy absorption coefficiert is introduced through absorption mean

e = /xa(w% dv.

Heree (v) is the monochromatic radiation energy density. For grey material, the radiati
energy emissivity, is introduced through Planck mean

a B, T)
KDZ/X orT4/m @

HereB(v, T) is the Planck function, andr is the Stefan—Boltzmann constant. Thus, the
radiation coefficients are generally solution dependent. In astrophysics, self-gravitatio
often important, and therefore, the gravitation coefficigig also solution dependent. It
is interesting to point out that equations for radiation transfer were analytically studied
Castor [4] along time ago, and it was found that the form of emission as described in Eq.
is true only under the assumption of local thermodynamic equilibrium (LTE) between t
radiation field and the gas material. In this paper, we do not intend to deal with radiat
hydrodynamics and radiation coefficients in the general case. Instead, for the simplicity
treat these coefficients, including the gravitation coefficient, as constants, since the s
Egs. (1)-(7), or a similar set of equations, is widely used in applications. We hope that
approach to be presented here may be useful for more general situations.

For two-dimensional problems, we will employ a dimensionally split technique. Ther
fore, we write the one-dimensional projection of the above equations, which will be solv
in one-dimensional sweeps,

ou oF
T 8
at + aX ®)
Here
p IOUX
PUx pui +p
pUy PUxUy
U= | pux + fx/c |, FU) = Fm ,
puy + fy/c pUxUy + Uy fy/cC
) Ux& + cfy
E ux(E + p) + cfy
0
P (9x + x )
0
S(U) = P9x — %Lxx fx/c ,
0
—pr B — p(ke®r — akpT?)

—pr 5 + xpux fx

X
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andF, is the flux for total momentum,
2 1
Fm=puy+p+pr+ Euxfx~

3. CHARACTERISTIC FORMULATIONS

In this section, we will discuss characteristic formulations for radiation hydrodynamic
equations. The procedure to be presented here may be applied to general hyperbolic sy:
of conservation laws described by Eqg. (8) wittunknowns,U = (uy, Uy, ..., u,)" and
F=(f, fo, ..., f0)T.

We write Eg. (8) in the form

ou ou
30 + A& =S 9

Here, A(U) is an x n matrix {g; }, &j = 9f; /ou;, andu; and f; are thejth andith element
of F andU. In the following,ck andLy [= (I, 12, .. ., |5)] denote thekth eigenvalue of the
matrix A(U) and the associated left eigenvector, i.e.,

LKAU) = oLy, k=12 ...,n. (10)
Obviously,ck andL both are functions of). Actually, ¢, called a characteristic speed, is

a wave speed of the system. Multiplying Eq. (9) from the left by the eigenvegtcand
using Eq. (10) we have

au  au
L &= 402 ) =L,S. 11
k(8t+k8x> k (11)

The equatiord x/dt = ¢ (U) defines a curve i —t space, which is called a characteristic
curve. Along the characteristic curve, we have

U au
du= (= 462 at. 12
<at +Ckax> (12)

Using Eqg. (11), along the characteristic cudse/dt = ¢, we have
Ly(U)(dU — Sdt) = 0.
If d R« is used to denote
dR = Ly (U)(dU — Sdt), (13)

then along the characteristic curgdR,, which is normally called a differential of Riemann
invariant, remains vanishing:

dR=0. (14)
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Following this procedure, for the system described by Eq. (8) we may find five ch:
acteristic speedsly, Uy & Cs, and+c;. Herecs is the sound speedi = /vy p/p andc; is
the radiation speed = ¢/ fe. The differentials of Riemann invariant for the characteristic
speeduy are

dR = (dp— Ap) — c2dp, (15)
duy =0, (16)
dfy, = 0. (17)

Here

0
Ap= Cp(/ceer - KpafT4)dt/(E> .
p/,
Two differentials of Riemann invariants for two sound waves are
dRe: = (dp— Ap) & pCs(dux — Auy). (18)
Here
Auy = (g + x fdt.

These differentials of Riemann invariants are the same as those for the Euler equa
except for the effect of the source teBnTwo differentials of Riemann invariants for two
radiation signals are

dR: = p(c¢? — ¢)[cdfy — Afy) £ (da — Ag)]
+[2cfy £ (& + pr)G][(dp— Ap) £ pC (dux — Auy)]. (19)
Here

Ag = —C,o(/ceer — Kpa,T“)dt,
Afy = —cypfydt.

4. NUMERICAL SCHEMES

Considering a gridx; }, integrating Eq. (8) in a grid celt; <x < x;,1 and over a time
step O<t < At, we have

At — -
U7 = Ui+ [F(U) — FU ] + St (20)

Here Ax; is the width of the cellAt is the time stepU; andU" are two cell-averaged
values ofU at the initial time and at the new tinte= At, U; is a time-averaged value bf
over the time step at the grid poirt= x;, and they are defined as, for example,

1

1 Xit1 _ At
U= —/ U(At, x) dx, U = —/ U(t, x) dt. (21)
AXi Xi At 0
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S in Eqg. (20) is the source ten®(U) evaluated at){'[= (U; +UM)]. To get Eq. (20),
we have approximately used the product of cell (or time) averaged values as the cell
time) averaged value of a product. Therefore, one of the key points in the scheme i
approximately calculate the time-averaged valugand the evaluation oiﬁh which will
be discussed in the following five subsections.

The time-averaged valuek needed in Eq. (20) are calculated through Riemann problen
approximately solved. A Riemann problem is an initial value problem, Eq. (8), with t
initial condition

UL if x <0

Ur if x> 0. (22)

U0, x) = {
HereU_ andUg are a pair of left and right states.

4.1. Explicit Treatment for Flow Signals

In order to resolve shocks, we treat flow signals explicitly. We restrict the size of time st
so that sound waves propagate no more than one grid cell. For a given pair of left and r
states, we approximately calculate the time-averaged valugsasfd p at a grid pointy;
and p;, through solving the following set of two equations

P — (PL + ApL) + pLCsi[Uxi — (UL + Auy )] =0, (23)
Pi — (Pr + APR) + PrCsRIUxi — (Ur + AUxr)] = 0. (24)

Here the subscrigt (or R) denotes the evaluation at the left (or right) state. Equations (23
(24) come from the property of Riemann invariants for two sound waves that along |
characteristic curvedx/dt =ux + ¢s, d Rsx. =0. To keep the difference Eg. (20) second
order accurate in time, we need the set of time-averaged flux accuate\n). SinceAuy
and Ap, as in their definition, are already proportionalA®, we may evaluaté\u, and
Ap at the initial time for the use in Eqgs. (23), (24). Therefore, we may explicitly find th
time-averaged values, anduy; and keep the difference Eg. (20) second order accurate
time.

Now we would like to discuss the evaluation of left and right states used in Egs. (23), (2
If we were working on a Lagrangian algorithm, the left (or right) state used in Egs. (2:
(24) should be the state of the left (or right) cell to the grid point in the lowest order al
should be the averaged value on a domain of dependence in a higher order. But, sinc
are working on an Eulerian algorithm, the left (or right) state to be used in Egs. (23), (:
is not necessarily the state in the left (or right) cell to the grid point.

Considering the Riemann problem arising at the grid priatx;, as an example, we
describe the calculation for the effectiug. and p_ used in Eqgs. (23), (24). Ifuy_1 +
Csi—1) > 0 and(uyj + Csj) > 0, then we consider the domain-average on the domain
(Uyxj—1 + Gsi—1) At < X < X; the effective left state. lfuyi_1 + Csi—1) < 0 and(uy; + Csj) <O,
then we consider the domain-average on the domainx < x; — (Uxj + Csj) At the effective
left state. If(uyi_1 + Csi—1) > 0 and(uy; + Csj) < 0, then we consider the domain-average
on the domaink; — (Uyj_1+ Csi—1) At < X < X; — (Uxj + Csi) At the effective left state. If
(Uyj—17+ Csi—1) < 0 and(uyj + csj) > 0, we are in the middle of a rarefaction fan. In this case
we consider the average of two states in the L)st andith cells with weighting factors
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a b
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c d
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FIG. 1. An illustration for effective left and right states. (a) (fi,. + ¢s.) >0 and (uygr + Csg) > 0, then
the domain-average on the domain- (ux, + Cs ) At <X <X is the effective left state. (b) Ifux. +cs ) >0
and (uxr+ Csr) <0, then the domain-average on the domain- (Ux. + Cs ) At < X < X — (Uxgr + Csp) At is
the effective left state. (c) I{uy. +¢cs ) <0 and (uxr+ Csg) <0, then the domain-average on the domain
X <X <X — (Uxgr + Csr) At is the effective left state. (d) lluy. + Cs1) < 0 and(uyg + Csr) > 0, the average of the
left and right cell-averages with weighting fact@tsr + csr) and—(uy,_ + Cs.) is the left state.

(uxi + Csi) and —(uyi_1 + Csi—1) the effective left state. This calculation is illustrated in
Fig. 1. The effective right state may be similarly calculated based on the signg-efcf)
on the two adjacent cells.
From Egs. (15)—(17), we may also explicitly find the time-averaged valugswf, and
fy at the grid pointp;, uy;, and f_yi, through the three equations

P — (P°+ AP) — (41 — o) =0, 25)
fy=19. (27)

Here, the superscript O denotes the domain-average over the domain befwaied
(Xi + UyjAt). As Ap and Auy used in Egs. (23), (24), we explicitly evaluatep used
in Eq. (25).

For the calculation of domain-averages, for example, of gas presgstmgerpolations
are needed to determine the structurepofside each grid cell. Although more sophisti-
cated interpolations may be used, we use a linear interpolation in this paper for the
structure. Therefore, the valuespht the grid pointx = x; andx = x 1, pi andp;;, are
pi — ki Ax; /2andp; + kj Ax; /2. Here the sloplg is determined bypi 11 — pi—1)/(AX_1/2
+ AX + AXi11/2). After we obtain the values at grid points, the monotonicity constrair
originally suggested by van Leer [6] is applied to these values at grid points, i.e., no val
interpolated within a cell shall lie outside the range defined by the cell-average for this ¢
and its two neighbors. Therefore, after the monotonicity applied, the cell structure will |

Pi(x) = pi + Ki[x = (X + A% /2)]/Ax;,
and
Ki = s+ min[2x max(s * Ap;, 0), 2% max(s * Api_1, 0), S* (pir — pi)].
Here

s=sign(pir — Pi),  Api = Pi+1— Pi.
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Through this explicit treatment for flow signals, we may obtain the time-averaged valt
,0_,, pi, Uxi, Jy., andf ;. Using these time-averaged values, we explicitly upgate,; and
fyi to getp/”, y,, andfn

4.2. Implicit Treatment for Radiative Signals

In this subsection, we will discuss the implicit calculation of the time-averaged values
fx ande at grid points, which are needed in Eq. (20). For the convenience of our discussi
we write Eg. (20) here again

At _ _ _
o{Ug — pilxi + — Ax [Pi+162xi+1 + Piy1 — 0 Uii - pi]
Xi
- ,Oin (gx +x fxi)At =0, (28)
1 At — -
pinUQi — pilxi + E‘Sfxni + A—)(i(Fmi+1 — Fmi)
At _ _
CAX (Uxij+1 — Uxj) fxni - Atgx:oin =0, (29)

sef + at [umlem +Cfyiss — Uxi€i — Cf il + P AA X (Uxi+1 — Uxi)

— Atcpl” [;cee,i — kpar (T )4} =0, (30)
6E“+—[ux.(E. + p.)+cfx.]+ at pr. (Uxi+1 — Uxi)

— xAtolug; f1 = (31)

Heresel; =€} — &, andSE' = E[' — E;. In Egs. (28)—(31), we have evaluated the sourct
terms att = At, which will make Egs. (28)—(31) only first order accurate in time. As
we will show in this subsection, we use Egs. (28)—(31) only for two sets of values. O
is the set of time-averaged flux, which is needed in Eq. (20) and has to be only first or
accurate to keep Eq. (20) second order accurate in time. The other set of values is the
order accurat®", which will be used in the evaluation of the source t&hin Eq. (20)

§ = s[5+ ).

Although these two sets of values are first order accurate, after we plug these two se
values into Eq. (20) the updated valud are second order accurate. Thus the numerice
scheme being described in this paper actually has two steps, predictor and correctc
the predictor step, we find first order accurate (in time) flux and cell-avetdgeis the
corrector step we put the first order accurate solu1|+'c(b_1i) andUy, back into Eqg. (20) to
updateU; .

In the time scale of flow motion, a time sty is so large that, At/Ax; is much larger
than unity. Therefore, we use the backward Euler formulatiorfaand f_xi,

& ~dl (32)

Hered! =& (At, %), fi7 = f4(At, x;), and the superscriph stands for feft edge at the
new time.”

As shown in Fig. 2, the values di andd” may be approximately calculated through
tracing two radiation characteristic curves, which pass through the pim{), back to
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n In
1.0 xiCrd
L e— Coit [CTP— T
t/ At
0
m m
Xi-1 Xi-1 X X

Xit+1

FIG. 2. The values o8 and f!! are calculated through tracing two characteristic curves back to the cente
of two neighboring cells.

the centers of two neighboring cells. From Eq. (19) we have
a-1{c[ff — fx(n-1at x7y) — Afeioa] + o [@] — & (n-1At XT) — Al }
+b"7 . {p — p(ric1At, X" ;) — Api_a
+ ¢ pi—1[Uxi — Ux (ti—1At, X" 1) — Auyi_1] } =0, (33)
afc[fy — fk(nat,x") — Afyi] —c [d) — & (nAt, x") — Aei] }
+b7{ B — p(ri AL X™) — Ap + G [T — Ux (AL X™) — Auy |} = 0. (34)

Here,x™ is the center of a cell and At is the time at the intersection between the line
x=x" and the characteristic curve passing through the paintAt), a andb are the
coefficients of differentials of Riemann invariants Eq. (19), and they are

a=p(c?—c), b =2xfitce+p).
It is easy to find that

AXi
=1- .
2c At

As stated before, to keeg' and f)" first order accurateAp;, Auyi, A&, and Afy; in
Egs. (33), (34) may be explicitly evaluated at the initial time. The value of a variable, f

example,fy, at(zj At, x™) in Egs. (33), (34) is approximately calculated from cell-average
fxi and £} through a linear interpolation in time,

fx(zAt, x") = fui + 78y

Solving Egs. (33), (34) foe! and f)7, we may writed” and . in terms ofU!":
1 c 1
dt =+ 5n o - 2ot - el + poul

1 c 1
+ STi-1 {56‘?, a1+ aﬁ;}_l + aCi—ﬂSpin_l + Pi-lCi-lSUQi_l] , (35)
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1
i = T + 5o [T — G + mopT! — comprduy]

1
+ ?Cri_l [C(Sf)?i_l +C o€l +&idp, + q{i_lpi_l(SuQi_l] . (36)
Here

o 1 c
g = é(eri + Agi +6&i_1+ Agj_1) — E(fxi + Afyi — fxic1 — Afyxi—p)

1 _ _
+Eni[pi — Pi — AP — G pi (Uxi — Uxi — AUy)]

1 _ _
— Egi—l[pi — Pi—1 — ApPi—1 + G pi—1(Uxi — Uxi—1 — AUxi—1)], (37)

1 Cr
fo = > fxi + Afxi 4+ fio1 + Afyio1 — E(a'i + A& —&i_1— A&j_1)

1 _ _
- ?Cﬂi[Pi — P — AP — G pi (Uxi — Uxi — AUy)]

1 _ _
- Z*Cé'ifl[pi — Pi—1— ApPi—1 + G pi—1(Uxi — Uxi—1 — AUyi—1)]. (38)
n=2Cfx_Cr(er‘|’pr) §=2Cfx+cr(er+pr)
@@ oG-

The coefficients in Egs. (35)—(38) depend @np, &, and fy. To keepe! and f." first
order accurate, we may evaluate the coefficients at eitady ort = At. In our code, for
the coefficients we use the initial values@énd p, and the values at= At for g and fy.

If we insert Egs. (35), (36) into Eqgs. (28)—(31), we will get a set of nonlinear algebre
equations for a set of cell-averaged valups, uf;, €}, and fi. Since we have used the
backward Euler formulation for radiation signals, the numerical errors in radiation sign:
undergo a quick damping in the time scale of flow motion.

4.3. Iterative Approach

Equations (28)—(31), (35), (36) may be iteratively solved. We insert Eqgs. (35), (36) ir
Egs. (28)—(31) and get a set of nonlinear algebraic equations for cell-avgrages, €,
and fJ}. To treat the nonlinearity of the resulting equations, we write the product of tw
unknowns, for example)?; and fi, as

Xi?
u;(]i fxni = U§i3f>?i + inSUQi + Uxi fxi~
Similarly,

(1) = [T+ T)sT + 77

After some straightforward manipulations, we may write the set of algebraic equations
the form

Qi 8Vin =P 5Vin+1 + MiSVin_l + Ci. (39)
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HereV} is a vector for unknowns,

V=V -V, Qi, P, andM; are three matrices which depend on unknoWfisandC;

is a vector which is independent of unknows. The set of Eq. (39) is what we want to
solve, which is nonlinear. For the nonlinearity we have not introduced any approximati
such as any linearizing procedure, in Eq. (39). Therefore, our treatment for the nonlinee
is completely nonlinear.

The set of Eq. (39) may be iteratively solved, for example, through a red—black approz
or Gauss—Seidel method. In a red-black approach, numerical cells are divided into
sets{i=2j+1; j=1,2,...},and{i =2j; j =1, 2,...}, which are called red and black
sets. For each iteration, we solve Eq. (39) for the red set first with the black set fix
and then solve Eq. (39) for the black set with the red set fixed. Therefore, informat
propagates two grid cells for each iteration in both directions in the red—black approact
the Gauss—Seidel methat¥/[' is evaluated through most recent values\ér, andV{_,.
We would like to mention that for the set of Eq. (39) the convergence of the Gauss—Se
method is slower than the red-black approach. But, if a sweeping mechanism is adde
the Gauss—Seidel method, the resulting sweeping method converges much more fast
the red-black approach. The sweeping mechanism we used in this paper is the follov
[35]. Inthe first iteration, we solve Eq. (39) foe= 1 first, then foii =2, and so on, until for
i = N. In the next iteration, Eq. (39) is solved fofromi = N toi =1, as shown in Fig. 3
in which the arrows indicate the orders solving Eqg. (39) for differénteach iteration. We
would like to mention that the matric€g;, P;, andM; in Eq. (39) have to be adapted to
the new solution values after each iteration, but they do not have to be adapted to the
solution values until a complete iteration is finished.

To show the convergence, we initially set up a sound wave and a radiation wave,

dRy_,  dR-_  dR-_ g

dx dx dx ’

dRs; : dR+
ax = 0.01sin2r x), ax
The initial profiles for physical variables are obtained through solving this set of ordine
differential equations fop, p, ux, &, and fy. The sound speed is about unity and the spee
of radiation signals is f0We turn off all the radiation coefficients in this example. When the
time stepAt =5 x 10~°is used, the Courant number for radiation sigmalst / Ax is about

— 0.01siN27X).

2nd iteration

L I I ! ] | | | | | 1 | J

1st iteration

L I I ] I | | ] | ] | [ J

FIG. 3. Anillustration for the sweeping method. The arrows indicate the orders to implement Eq. (39) in e
cell.
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FIG. 4. The initial condition (dashed lines) and the solution after one timeAte(golid lines).Atc, /AX is
128.

128. HereAx =1/256. The dashed and solid lines in Fig. 4 show the initial profiles an
profiles after one time step, respectively. Figure 5 shows the convergence for the red-t
approach and sweeping method. The erkdn Fig. 5 is the maximum of the discrepancy
between the left-hand and right-hand sides of Eqgs. (28)—(31) for all grid cells.

As stated before, the scheme presented in this paper is not designed to resolve the
scale of radiation signals. We are interested only in the time scale of flow motion. Thereft

0F T ] T | L T T
sl . |
g - KEP .
o L i
2 0

10 |

2 " redbiask
I IR R R S A N R R A R R R

0 200 400 600 800
the number of iterations

FIG. 5. The convergence obtained from red—black (dashed line) and the sweeping method (solid line) w
Atc, /AX is about 128.
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FIG. 6. The initial condition (dashed lines) and the solution after one time Ate(golid lines).Atc, /AX is
17,920.

for the problem described above, the size of time step may be much larger. We increas
time step toAt = 7 x 1072 for the problem above, so that the Courant number for radiatio
signals is about.792 x 10* and the Courant number for the sound waya&t /Ax is about
0.84. The solid lines in Fig. 6 show the profiles after one time step, and Fig. 7 shows
convergence of the sweeping method.

4.4. Acceleration of Convergence

From numerical experiments, we noticed that the sweeping method converges extrel
fast for those problems with known boundary valuég,andVy, ,, compared to other
problems. Suppose we have a problem in which the initial condition is the same as that
described above, but values at boundaries are fixed. If a gridMit256 grid points and
atime stepAt =7 x 1072 are used for the problem, we will get the convergence shown |
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FIG. 7. The convergence obtained from the sweeping method wtery Ax is about 17,920.

Fig. 8, in which the dashed line is obtained from the red—black approach and the solid
is obtained from the sweeping method.

From the phenomena shown in Fig. 8, we have developed an iterative approach for ger
boundary conditions, which converges much more fast than the sweeping method. Sup
we have a problem with boundary conditions written in general forms

Hi(V87V?\l+l’V27V?\I) =0, ji=12,...,8 (40)
LI L S O O B
0 — o —
3 R T OO ]
S 5 =
o = _
10 — e ]
- red-t:l;ék -1
bl b b b b b b i LA
0 50 100 150 200 250 300 350

the number of iteration

FIG.8. The convergence obtained from the red—black approach (dashed line) and the sweeping method (
line) for a problem with values at two fake cells are fixed whstie, / Ax is 17,920.
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HereVgandVy , , are the values on two fake cells at two boundaries. Our iterative approe
is listed below:

(1) Obtain the value¥y andV .1 through the boundary conditions, Eq. (40), from
initial valuesV;,i=1,2,..., N.

(2) Guess the values 8 andV} , ; asVg andV 1, respectively.

(3) lteratively solve Eq. (39) fov! (i =1, 2, ..., N) to a required accuracy, but keep
Vg andVy ., fixed during the iteration.

(4) From Eq. (39), find Jacobi coefficiendd/!/aVg, aV]/dV}, 1, dVY/8Vg, and

VR/OVR1-

(5) From the boundary conditions, Eq. (40), and the vadyy aVg andaVy /dVY ., 1,
find correctionsAVg andAVY, , ,, of the initial guess

(6) Modify the values o¥/g andVy, 1, Vg =Vg + AVg, VR, =V + AV, and
go back to the step (3).

We explain the steps listed above in more detail here. In step (2), we guess only e
values since/g andVy, ; are vectors with four elements. In step (3) we iteratively solve
Eqg. (39)forv]' (i =1, 2,..., N)asdescribed in the last subsection. It should be emphasiz
that during the iteration, the values \gf andV{, , are fixed. Therefore, in this step, we
need only a few iterations if we use the sweeping method. After this step the solutions
V(i =0,12,...,N)do not necessarily satisfy the the boundary conditions, Eq. (40).
the boundary conditions are satisfied, then we get the solutions. Otherwise, we have t
to the next step. As a result of step (3), the value¥'bandVy, depend oVg andVy, ;.
We may adjust the values & andV{ ., so that Eq. (40) holds. Therefore, we may use
the set of Eq. (40) to find a correctionVg andAVY, ;, of the initial gues®/§ andVy, ;.
The corrections are the solutions of the following set of eight equations

n n n n n aVl n 3V2 n
Hj| Vo + AVo, Vi1 + Vi Vi+ PV AV + BVNHAVNH’
EAVAN RAVAN
VR + N AVE + N AVR =0, j=12...,8 41
N T avn Vo T Ve N+1> J (41)

In Eq. (41),V] andVY}, are the solutions of step (3). The Jacobi coefficiesits,/aVy,
VI1/dV{1. VY /0VG, andaVy /aVY 4, represent the dependence of the solutidfs,
andvn , on the initial gues¥/g andVY, ;. The Jacobi coefficients may be obtained from
Eqg. (39). In order to find the Jacobi coefficients, we take the derivative of Eq. (39) w
respect ta", which is any one of elements W) andVy ;. Thus we have

QiVI =PV, + MV, (42)
Here
. PVl
Vin = 5 rl1
v

SinceQ;, P;, andM; in Eq. (39) are not constant, the matri€gs P;, andV; depend on the
unknowns\A/in aswellasd/]. Like Eq. (39), the system described by Eq. (42) is nonlinear toc
Exactly like Eq. (39), Eq. (42) may be iteratively solved. When we iteratively solv
Eq. (42), thev[" are kept constant which are the solutions obtained in step (3). The bound
vaIuesVn andVNH, in Eq. (42) are fixed. For exampleuf is pg, the boundary condition
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used for Eq. (42) is

O OO

and
VrrlH—l =0.

Therefore, only a few of iterations are needed for Eq. (42) if the sweeping method is us
Since there are eight elements\ig and VY, ,, we have to solve Eq. (42) eight times,
and each for one of the elements. After finding the Jacobi coefficients, we can find
corrections through solving Eq. (41).

The approach presented here is for general boundary conditions, Eq. (40). For tyf
boundary conditions used in applications, such as periodic boundary conditions, reflec
boundary conditions, flow-in and flow-out boundary conditions, the forms of Egs. (40), (4
are very simple. For example, for periodic boundary conditions, the form of Eq. (40) is

n __y\/n
Vl _VN+1’

VI = V0,

and the form of Eq. (41) is

VAL
VT + Z ﬁnlAUn = Vrl11+1 + AVRIH’
v

V"
YED Mﬁ‘ AV" = V5 + AV,
v

Together with the sweeping method, we call the approach the accelerated appro
Applying this accelerated approach to the wave described beforaNnigh256) grid cells
and the time step.t = 7 x 10~2, we obtain the convergence shown in Fig. 9. The horizontz
coordinate in the figure is the number of iterations used for iteratively solving Eq. (39). .
stated before, for each of eight Jacobi coefficients, we also iteratively solve Eq. (42).
each point on a curve shown in Fig. 9, Eq. (42) is solved only once for each eleméht of
andVy,,, i.e., step (4) described above is implemented only once. For example, for
number of iterations 10, we use 5 iterations solving Eq. (39) before step (4), and we
another set of 5 iterations solving Eq. (39) after the valggandV?{, ,, are corrected once.
In Fig. 10 we show the convergence vs the total number of iterations used for both Eq.
and Eq. (42) for all eight Jacobi coefficients.

The accelerated approach proposed above significantly reduces the cost of simulat
Compared to the approach shown in Fig. 7, for a given required accuracy, the acceler
approach shown in Fig. 10 reduces the number of iterations needed by more than one c
In our numerical examples to be shown, only less than 40 total iterations are neede
each time step, no matter how many cells radiation signals propagate in one time stef
measure the cost of each iteration, we run our code 1000 time steps, and in each time
we allow 40 iterations. The total cost of this run is 36.1 s. We run the same code 1000 t
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FIG. 9. The convergence obtained from the accelerated red—black (dashed line) and accelerated swe
method (solid line) whertc, /Ax is about 17,920. The horizontal coordinate is the number of iterations used f
Eq. (39).

steps again, but in each time step, we allow 50 iterations. The total cost of the second
is 38.3. From these numbers it is easy to find that each iteration c@ts1®* s and
the each time step without any iteration cos®&3 102 s. Therefore, each iteration costs
only 0.8 percent of the CPU time which is used for a fully explicit scheme which is seco
order accurate both in space and time.
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FIG. 10. The convergence obtained from the accelerated red—black (dashed line) and accelerated swe
method (solid line) whemtc, /Ax is about 17,920. The horizontal coordinate is the total number of iteration
used for both Eq. (39) and Eq. (42) for all eight Jacobi coefficients.
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4.5. Consideration for Multi-dimensions

The implicit treatment for radiation signals and the iterative approach described ab
may be directly applied to two-dimensional radiation hydrodynamical Egs. (1)—(7). In tt
paper, we apply the dimensionally split technique originally proposed by Strang [3] for ¢
plicit schemes to our implicit—explicit hybrid calculation. The method for two-dimension:
equations is the symmetric product of one-dimensional operators:

=

Lav= 5 (LAL A +LALA)- (43)

2
HereL’;, is a one-dimensional operator with time stepfor one-dimensional Eq. (8).
For a linear hyperbolic model problem,

JoF JoF oF
= A_ + B_s

ot aX ay
where coefficientA and B are symmetric matrices and constant. Following the procedul
provided in [3] it is easy to show that the operatqy; is second-order accurate if each one-
dimensional operator is. For any smooth functldrx, y, t), the second order accuracy
requires that

U au 1 92U 92U 92U

LaU=U+At| A— +B— ZAt?|A°— + (AB+ BA B°—

At + < o T 8y> +3 { e + (AB+ )8x8y+ 72
+ O(AtD). (44)

Since each one-dimensional operator is second order accurate, i.e.,

au 1 92U

LX.U =U + AtA— + —At?A2—
at * ax T2 ax?’
au 1 92U
LY. U =U + AtB— + = At?B%>——.
At + ay t3 ay?

Applying the operatot »; defined in Eg. (43) on a smooth functidhx, y, t), and using
the two equations above, we may find that Eq. (44) is valid. Therefore, each time step f
two-dimensional problem is divided into four one-dimensional sweeps.

In this paper, we will use the approach Eq. (43) for two-dimensional radiation hydroc
namical Egs. (1)—(7). The one-dimensional operatfyris the solver described before for
one-dimensional Eqg. (8). The size of time step is limited by the maximum value of wa
speedsuy & cs| and|uy £ cs| involved in all four one-dimensional operations in the whole
simulation domain. The accelerated approach may be applied to the two-dimensional -
ation. The way we use in this paper is very straightforward. For exampl& fterations
for a two-dimensional problem are achieved throgtterations carried out in each of four
one-dimensional sweeps in Eq. (43).

5. NUMERICAL EXAMPLES

The numerical scheme described in this paper has been tested for some problems fc
correctness and robustness, a few of which are presented here to illustrate the features
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scheme. In all the exampleg,and fg are set to 33 and 1, respectively. Unless specified
otherwise, the size of time step is such chosen that the Courant number for sound w
is about 0.8. In each numerical example, we use the accelerated approach, and a rec
accuracy used in step (3) in Subsection 4.4 is chosen tobe 10

The first set of four simulations is for the propagation of smooth waves. Initially we s
up a sound wave and a radiation wave throddfy, andd R.. The sound wave speed is
about unity, anda is set to 2000. In the first rum;, f, and radiation coefficients are all set
to zero. The dashed lines in Fig. 11 are the initial profiles, and the dotted and solid line
Fig. 11 show the profiles at= 1.0 andt = 2.0, respectively. The smooth wave becomes ¢
shock when propagating. In the second run, weggéqual to 0.01 and the initial profiles
are shown through the dashed lines in Fig. 12. The solid lines in Fig. 12 show the prof
att=1.0 andt =2.0. It is interesting to compare the results with those obtained from
fully explicit and second order accurate scheme in which the size of time step is limit
by the radiation speed. The dotted lines in Fig. 12, which are almost hidden behind s
lines forp, p, andu, are obtained from the fully explicit scheme. There are little difference
in flow fields between the two sets of solution. The third run is for a flow with a finit
emissivityxp. The initial profiles are shown through dashed lines in Figct3a, is set to
0.05. The solid lines in Fig. 13 show the profileg at1.0 andt = 2.0. The internal energy
of flow decreases while the radiation energy increases with time. In Fig. 13 we also ¢
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FIG.13. The numerical solution for the case of radiation hydrodynamicsedgth, = 0.05. The dashed lines
are initial conditions, and the solid lines are the solutioh-atl andt = 2. The dotted lines, which are hidden
behind solid lines, are obtained from a fully explicit scheme.
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the numerical solution (dotted lines) obtained from the fully explicit scheme. It is hard
see differences in flow fields between the two sets of solution. The fourth run is to show
acceleration due to the radiation flux. The initial profiles are shown in Fig. 14 through t
dashed lines. The momentum absorption coefficieistset to 0.2. The solid lines in Fig. 14
show the profiles at= 1.0 andt = 2.0. The flow is accelerated through the radiation flux.
In Fig. 14 we also give the numerical solution (dotted lines) obtained from the fully explic
scheme.

Next, we would like to demonstrate the accuracy of the scheme. Initially, we set up t
waves throughl R;; andd R, which are shown by the dashed lines in Fig. 15. The sour
speed is about unity. The light speeds set to 5000, andkpa, is equal to 0.01. We run
the problem using six grids with 256, 128, 64, 32, 16, and 8 grid points. The solid lines
Fig. 15 show six sets of solution &= 10 obtained from these six grids. It is hard to see
differences in the results for the three grids with 64, 128, and 256 grid points. To show
correctness of the solution, in Fig. 16 we plot the numerical solution (solid lines) with 2
grid points against a solution obtained from a fully explicit scheme (dotted lines complet
hidden behind the solid lines).

The next set of examples involve Mach 3 shocks. We first test the case of the El
equations. In Fig. 17, the dashed lines in the plotsfop, u, ande are the initial profiles,
and the dotted lines are the numerical solutiont :&t0.15 for the Euler equations. For
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FIG. 15. The numerical solution after a sound wave propagates about ten wavelengths. The dashed line
initial profiles, and the solid lines are the solution obtained from six simulations which have the different numt
of grid points. The six grids have 8, 16, 32, 64, 128, and 256 grid points. The three sets of solution obtained f
three grids with 64, 128, and 256 grid points are almost identical.

radiation hydrodynamical equations, we add radiation energy and flux in this problem
shown by the dashed lines in the plot rand f,. We setckpa, equal to 0.05 and the
light speed: equal to 5000. The numerical solutiort at 0.15 for radiation hydrodynamical
equations is shown by the solid lines in Fig. 17. A direct effect of the firjia this problem

is the increase of the radiation energyand the decrease of the internal enepgy The
flow velocity and radiation flux are also changed. To compare the numerical solution w
those obtained from the fully explicit scheme, in Fig. 18 we give the two sets of soluti
against each other. The dotted lines, which are completely hidden behind the solid li
are the solution obtained from the fully explicit scheme.

The final one-dimensional example is a Mach 10 shock impacting on a denser reg
The sound speed in the pre-shock state is unity. The gas in the denser region is 100 t
denser than that in the pre-shock state. The dashed lines in Fig. 19 show the initial prof
The solid lines in the figure are the solution of the Euler equations-#05. For radiation
hydrodynamics, the light speetlis set to 18, and we let radiation fields get into the
simulation domain through the left boundary, i.e., we sgt {x) to (10, 0.1) ak=0as a
boundary conditioncke is set to 25, and, andy are set to zero. The solid lines in Fig. 20
are the solution at=0.05.



RADIATION HYDRODYNAMICS 223

:I L) _LLI_I l 1T ' 7T I L [— _I LI Ll\l 1 | 1T I T 71 I 1T |_
C - N 3 - ~ ]
87 R e 1004 = 7,7 -
sk E E
Q ssf qd a 1| =
57 - = 898 — 3
.56 }/\/E 996 [— \\ P

—I L1 ! L1 L1t Ll ‘ o1 |-4 -I i1 I Ll L I 11| I 1 Ij‘] 1t 1 I

0 2 4 8 .8 1 0 2 4 6 8 1
,gllLLLLLLLLLLII Illll—l‘l-: :|1 T ILLI\I | IIIIII || T 17T |:
L T T - i 004 — N\ —]
F 5 002 - -
88 — E, 3
w E 1 o of N —
F ] F \ =
r \ 3
86 — — -002 - \ -
o - F \ , E
C ] -004 X ’ -
844 ) 44 141 N 111 L H o ENENENE BTSTETE AT B & AR B

0 2 4 6 8 1 0 2 4 6 8 1

LI I B |

1'2 -_‘ L I/Ll\\ I "--.l.~l L I T ’,_- 11 __' TT I/I/I‘I\I I l“l__l._l~| T T l 1T =
o ’ A 3 c ’ NS R ]
8 7 Ve - E ’ \: ]
E A 4 105 N =
r v SN 3 c SN 3
Ay N = N E s S ]
. [ 3 [~ ]
Y o Y 7] o 10 - \ /3
or \ ., o \ /]
o \ W] r A -
-4 v Y a5 \ ro 4
- \ PN - \ AT
:‘.__,' \\ 7’ - Feeler \\ 7 -~
.'B _| | I 1 i1 I 14 1 I 1 I~f1 111 '_ 9 —1 i1 1 I 11| I 1t | I 1 ITT 11t t_

0 2 4 8 .8 1 0 2 4 6 8 1

X X

FIG.16. The numerical solution after a sound wave propagates about ten wavelengths. Dashed lines are i
profiles, the solid lines are obtained from the implicit-explicit scheme, and the dotted lines, which are comple
hidden behind the solid lines and can't be seen, are obtained from a fully explicit scheme.

The remaining examples are for the two-dimensional situation. The first two tw
dimensional simulations are carried on a two-dimensional domajr-(0) x (Ly — 0),
whereLy =1/ cosa, Ly =1/ sine, anda = 3P, periodic boundaries conditions are usec
in both x- and y-directions, and the simulations are about waves propagating at the direc
which is ate degree with respect to the x-axis.

The first two-dimensional example is to show the convergence in the numerical solut
for smooth flow. Initially, we set up a sound wave with about unity wave speed and a rac
tion wave withc equal 18 propagating at the-direction. The dashed lines in Fig. 21 show
the initial profiles along the ling = L/2. The solid lines in Fig. 21 show the numerical
solution after the sound wave propagates ten wavelengths, which are obtained from
simulations through five grids witt?816?, 322, 64%, and 128 grid points. The differences
between the two sets of solution of%sdnd 128 are difficult to be noticed. To demonstrate
the correctness of the converged solution of flow motion, in Fig. 22 we plot the numeri
solution (solid lines) against the solution obtained from the fully explicit one-dimensior
scheme (dotted lines). There are no differences in flow motion between two sets of solut
although they are obviously different in radiation fields.

The second example is aboutthe steepening of a sound wave in atwo-dimensional dor
Initially a sound wave and a radiation wave are set up propagating alongdfrection.
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FIG. 17. The numerical solution for the propagation of a Mach 3 shodk=a0.15. Dashed lines are initial
profiles. The dotted lines are the results for the case of the Euler equations in which radiation quantities ar
zero. The solid lines are the results for radiation hydrodynamical equations in edpigh=0.01

The sound wave speed is about unity; 2 x 10° andca «p = 0.02. A grid with 128 points

is used in the simulation domain. The dashed lines in Fig. 23 show the initial profiles alc
the liney = Ly/2, and the solid lines in Fig. 23 are the numerical solution after the sout
wave propagates one and two wavelengths. For a comparison, in Fig. 23 we also give
solution (dotted lines) obtained from the fully explicit one-dimensional scheme, which ¢
hidden behind the solid lines.

The next example is interaction between a Mach 10 shock and a denser cloud. A circ
cloud is initially located in front of a Mach 10 shock, and the cloud tirfes denser than
the pre-shock state. The sound wave speed in the pre-shock state is unity and the light s
cis set to 16. The radiation coefficientg andkp are set to zero, antke is setto 2.5. The
simulation is carried on a 20 10 domain. Initially radiation fields;, fy, and f, are zero
in the simulation domain. As a boundary condition at the left side, we set constant val
for (p, p, ux, &, fx, fy), (p, P, uy) take the values at the post-shock state, andf(, fy)
take (10, 16, 0). An open boundary condition is used at other three sides of the simulati
domain. The simulation is carried out with a grid resolution 18212. The upper image
in Fig. 24 displays the temperature at one instant. As a comparison, in the lower imag
Fig. 24, we also give the solution of the Euler equations at the same instant. As show
the figure, the flow is heated through absorbing radiation energy. We have to point out
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FIG. 20. The numerical solution for the case of radiation hydrodynamics with= 25. Dashed lines are
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solid lines, are obtained from a fully explicit scheme. Constant values (10, 0.1) are assigned to the radiation f
(e, fy) at the left boundary as a boundary condition.

we actually simulated a half of the domain, and the other half is duplicated according to
symmetry of the problem.

6. CONCLUSIONS AND DISCUSSIONS

In this paper, we have proposed a numerical scheme for two-dimensional radiation hyz
dynamical equations in the transport limit. The scheme is of Godunov-type, in which the
of time-averaged flux is calculated through Riemann problems solved. In the scheme,
signals are explicitly treated, while radiation signals are implicitly treated. Flow fields a
radiation fields are updated simultaneously in the scheme. Numerical errors for radia
signals undergo strong damping in the scale of flow motion. The set of nonlinear algeb
equations arising from the implicitness of the scheme is iteratively solved, and the treatn
is completely nonlinear. The sweeping method used in the scheme significantly reduce:
number of iterations or computer CPU time needed. The accelerated approach prop
in this paper further reduces the number of iterations needed by more than one order
mater how many cells radiation signals propagate in one time step, only an extremely s|
number of iterations are needed. Each iteration costs only 0.8 percent of the CPU t
which is spent for one time step of a second order accurate and fully explicit scheme. Fi
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FIG.21. Five sets of numerical solution for waves obliquely propagating in a two-dimensional domain, whi
are obtained through?816?, 322, 642, and 128 grid points. The dashed lines are initial conditions, and the solic
lines are the solution after a sound wave propagates ten wavelengths. It is hard to see differences among tt
sets of solution obtained through%nd 128 grid points.

numerical examples, it is shown that the proposed scheme keeps the principle advantac
Godunov schemes for flow motion. In the time scale of flow motion, the numerical soluti
obtained from the implicit—explicit scheme is the same as that obtained from a fully expli
scheme which is second order accurate in both space and time.

The accelerated approach presented in this paper may be applied to other multi-colc
besides the red-black approach and may be applied to other hyperbolic systems of
servation laws, such as Euler equations and magnetohydrodynamical equations. We
applied the accelerated approach to the multi-coloring presented in [39], and the humb
iterations needed in [39] is dramatically reduced.
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FIG. 22. A comparison in numerical solution between our two-dimensional implicit—explicit hybrid schem
(solid lines) and a fully explicit and one-dimensional scheme (dotted lines completely hidden behind the s
lines). The dashed lines are the initial profiles along theyirel ,/2, and solid lines the solution after the sound
wave propagates ten wavelengths.

The rate of convergence of the scheme will be influenced by the values of transy
coefficients, since the source terms in Egs. (1)—(7) are implicitly treated in the scheme
an example, Fig. 25 shows the number of iterations needed vs the momentum absor,
coefficienty for a fixed tolerance. Here, and«. are set to zero and the Courant number
for radiation signals is @ x 1C°.

In this paper, we have used a dimensionally split approach for two-dimensional proble
Compared to unsplit Godunov schemes, a dimensionally split approach is much che
in both CPU time and memory requirements. But it needs further investigation whethe
not one can generally apply a split approach in implicit calculations although informati
may travel diagonally in a split approach. The split approach used in this paper is only
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FIG. 23. A sound wave and a radiation wave obliquely propagate in a two-dimensional domain. Dasl
lines are initial profiles along the ling= Ly/2, and two sets of solid lines are the solution after the sound wav
propagates one and two wavelengths. The dotted lines hidden behind the solid lines are the solution obtainec
a fully explicit one-dimensional scheme.

first step for multi-dimensional problems in radiation hydrodynamics. In this paper we he
used the split approach Eq. (43). Compared to a typical split approach widely used for
Euler equations,

Loat = LZtLXILXt Zt’ (45)

Eq. (43) doubled the cost. Itis not clear whether Eq. (45), together with an iterative appros
may be used in implicit calculations for some problems.

The numerical scheme we proposed in this paper may be useful in numerical simulati
for real problems, for which the equation of state and the constant Eddington factor
radiation fields should be changed. In real applications, specially in laser fusion, equati
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FIG. 24. The temperature in the interaction between a Mach 10 shock and a denser cloud. The cldud is
times denser than the pre-shock state. The radiation coeffigieatsl«, are set to zero, anck. is set to 2.5.
Initial radiation fieldss,, f,, and f, are zero. At the left boundary, the values(pf p, uy, &, fx, f,) are fixed,o,

p, anduy, take the values of the post-shock state, andf,, and f, take values 10, ¥ and 0, respectively. An
open boundary condition is used at the other three sides of the simulation domain. As a comparison, the |

image is the solution of the Euler equations at the same instant.

of state are much more complicated, and it may be tabular. The Eddington factor, if we
use, depends on radiation fields. The approach proposed in this paper, in principle,
be applied to this kind of equations of state, but each iteration of the iterative appro:
proposed in this paper will cost more since we have to numerically evaluate the equat
of state in each iteration. Second, the distribution of photons in frequency has to be ta

into consideration for real problems.
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FIG. 25. The number of iteration needed vs the momentum absorption coeffjcitantfixed tolerancex,
andx. are set to zero and the Courant number for radiation signald is 60°.
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